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Estimation of Monolayer Capacity for the BET Equation 

(‘ertain laboratories have used the surfa,ce 
:uca computed by fitting the BET (1) 
equation to Xa adsorption data at liquid 
air temperatures to caharacterize various 
porous solids. The purpose of this note is 
to describe an experimental design criterion 
for determining the best settings of the 
relative pressures at which to run adsorption 
determinations in order that a good estimate 
of the monolayer capacity, and hence the 
surfacse area, will be obtained. Experiments 
are selected by maximizing a function of the 
partial derivatives of the equation at specific 
values of the parameters. The statistical 
considerations which lead to the experi- 
mental design criterion that is used here arc 
discussed in the Appendix and elsewhere (2). 

The case where two determinations are 
to be run will be treated in detail. The case 
\vhere only a single determination is run 
will also be discussed. If more than two 
determinations are to be made, the procedure 
discussed here cm be readily extended to 
.such cases. 

The BET equation is 

I’ = (p, - p) { 1 Y”L - l)p/po) (l) 

where u is the volume of gas adsorbed on 
the solid at the relative pressure p/pO, c 
is a constant characteristic of the gas-solid 
pair, and vLll is the monolayer capacity. The 
equation may be written in the form 

1’ ,T, cs 
1’ = (1 - X)(1 + (c - 1)X) (2) 

by dividing numerator and denominator by 
p. and writing x for the relative pressure 
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The two required partial derivatives are: 

au, !JllL = - = ah (1 - X1<) 11”: (c - l)&) 
71 = 1,2, . . . ,n (3) 

Y,,, = 
aA _ 1!,,(1.,, + r,,72c - 1) 1 

- ac (1 - X,,) { 1 + (c - 1)X1< 1’ 
u= 1,2, . . . ,?2 (4) 

where ?z is the number of determinations to 
be made. The function which is to be 
maximized is written in terms of these 
partial derivatives. Suppose two runs are 
to be made and that the errors in measuring 
1’ are independently and Kormally distrib- 
uted with constant variance. Then, if the 
object is to obtain a precise estimate of u,,,, 
the function to be maximized with respect 
to ~1 and ~2 is: 

Kate that the value of this function is in- 
dependent of the magnitude of v,,,. If more 
than two determinations are to be made 
(i.e., n > 2), the same criterion is used 
except the summations go to n and not 2. 
Intuitively, this criterion concentrates on 
u,, and more or less ignores c except that an 
estimate of c must be obtained. 

Although the BET equation is capable 
of describing Type II or Type III isotherms 
(S), it has been used primarily for isotherms 
of Type II with the general range of validity 
between 0.05 and 0.30 relative pressure. 
Commonly, nitrogen adsorption at 90°K is 
used to determine the surface area of solids. 
When the surface area is expressed in square 
meters per gram and a molecular area of 
16.2 square angstroms is assumed for the 
adsorbed nitrogen molecule, surface areas 
from 5 to 5000 my/g approximately corre- 
spond to values of vIll of from 1 to 1000 cm3 
(at STP)/g adsorbent. The magnitude of c 
can range from I to more than 100. For the 
majority of adsorbents studied at liquid air 
temperatures, nitrogen exhibits high values 
of c, usually between 50 and 150. 
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Optimal l’wo-Point Designs 

Using the design criterion presented 
above, one can calculate two optimal relative 
pressures at which adsorption should be 
determined so that the most precise estimate 
of the monolayer capacity will be obtained, 
thereby yielding the most precise estimate 
of the surface area of the solid. These values 
are given in Table 1. The best two experi- 

TABLE 1 
LOCATION OF THE Two BEST FXPERIIIENTAL 

POINTS FOR THE MOST PRECISE ESTIMATE 
OF THE MONOLAYER CAPACITY IN THE 

BET EQUATION FOR z BETWEEN 
0.05 AND 0.30 

Determine adsorption at 
c relative pressures z of: 

2 0.13,0.30 
10 0.06,0.30 
40 0.05, 0.30 
80 0.05, 0.30 

100 0.05,0.30 
1000 0.05,0.30 

mental points are independent of the magni- 
tude of urn. An estimate of c can often be 
obtained from studies on similar adsorbents. 
The location of the best experimental points 
was determined (correct to the nearest 
hundredth) subject to the constraint that 
the relative pressures should lie between 0.05 
and 0.30. If it is known or expected that the 
range of validity of the BET equation will 
be smaller that this, then in most cases the 
two a,dsorption experiments should be car- 
ried out at the endpoints of the range. 

Optimal Single-Point Designs 

In the original paper for situations in 
which only one determination was to be 
made, Brunauer et al. (1) proposed that one 
take a single nitrogen adsorption point at 
a relative pressure of 0.3, and, using a BET 
plot (Eq. (1) in a linearized form), connect 
the single point so plotted with the origin 
and then determine v, from the slope. Values 
obtained in this single-point design for the 
monolayer capacity agreed within 5% of 
the value determined by the usual BET 
plot with additional data points. This single- 
point design is equivalent to taking c >> 1. 

Likewise, if we set c equal to some value 
much larger than unity in our design 
criterion (Eq. 5) with 0.05 I x: < 0.30, the 
result would be to determine a single ad- 
sorption at x = 0.30, which is what 
Brunauer et al. proposed. For some othd 
region of validity for the BET equation, 
the criterion suggests taking a data point 
at the upper limit of this range. A danger 
exists in the Brunauer method, as well as in 
the present one, in that the upper point 
may be out of the region of validity for the 
BET equation. If this were true, biased 
estimates of v,, would be obtained. Another 
single-point method has been described by 
Halasz and Schay (4). Katz (5) has presented 
an equation for the surface area involving 
experimental quantities for a constant vol- 
ume apparatus. 

APPENDIX 

For a nonlinear mathematical model 
71 = fY8,<) with 8 indicating the p parameters 
and r the independent variables, under 
suitable reasonable assumptions (see BOX 
and Hunter (A-l)), the posterior distribution 
of 0 is 

X exp 
{ 

- & (e - 6)‘lz-‘(8 - 6) 
1 

, 

where 

z-1 

and 

zz 

x21 ' . . Xpl 
cr.22 . . . xp2 

X’X, x = 7 

XZN . ’ x,N 

.XiJ = 

It is reasonable to design a set of experi- 



ments at those conditions which give the 
maximum posterior density to the most 
probable values. Thus the posterior density 
is maximized with respect to both 8 and f. 
The maximum probability density will be at 
the point 8 = 6 whatever the settings of 
%, so that n-e have 

Pl P, 

(p ; p) 

=k : 

. : .?q I 
Pl 

I;'12 2x2 p, 
J 

where c is a positive constant. Therefore it 
is necessary to minimize the determinant 
of B or, equivalently, to maximize the 
determinant of X’X. This can be used as a 
design criterion when the goal is to obtain 
precise parameter estimates for all the 
parameters in the model. (See Box and Lucas 
(A-W) and Box and Hunter (A-I)). To obtain 
a design criterion for the case where the 
experimenter is interested only in a subset 
of the parameters, a procedure such as the 
following may be used. 

Partition the (6 - 6) vwtor, 

Pl We now have 

81 - 61 ( > @,, - e,! P(Q9 
(O-Q= e.i'el = .e.: ;.; 

2 7 P,.i 1 PC+1 

P2 

I 
p-1/‘! 

= (4% u)” cxp 1 - & a’lzllclal 
f 1 

X 
s 1 

exp - k2 [RWR]} dR. 

Using the well known integral 

NOTES 

A’zvA = (a’1:a’2) 
I 

I -x11-1x12 
o I 1 

Q, = A’B-‘A can always be written as a 
sum of two quadratic terms Qp, and Qpz 
containing pl and p, elements, respcctivcly, 
where 

Q, = Q,, + Q,, 
Qp, = a’IBll-lal 

VP2 = (a, - ~‘,,q-1al)‘(~y2 - ~‘r2~ll-1&2)-1 
(a2 - Z’$li-‘a1) = R’SPR, say where S is 
(p2 x pd. 

\vhere p = pl + p,. 
where B is (n X q), 

We are interested in finding an expression 
for the marginal distribution, P@llY) 

p(811y) = p(B1Itqy! n’b 
.I’ 

s 

/2;l-l/Z 
= 

(dz;; up 

X exp 

Letting 
p(Bl,y) = 1x22 - Z'lrZ1l-'81*1-"*~ pn-1'2 

--__ 

(%tzaP1+"2 \ . 
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xI 
(1/2?ru)“2 

x22 - ~‘&11-1~12j-1’2 

X exp 
I 

- k2 a’lI;ll-lal 
> 

P(~llY) = 
/~ll(-l’z 

(vs up exp C 
- $2a’1211-1a1 

I 
. 

( : 1 
-1 

Cl1 . Cl2 
x = @‘X)-l = c-1 = . . . . . . . 

c21 . c2z 

1 C22 -c21 

= ii -cl2 Cl1 
; A = C11C22 - C12C21 

I;= ( 
1 - 

Cl1 - c12c22-1c21 

Cl2 -- 
A 

B 11 = CC 11 - c12c22-l 
-1 j&1( = \Cll - c12c2z ,c::i--’ 1 

and 

P@llY) = 
ICI1 - c12c22-‘c211+“2 

(dxr up 

X exp 

1 

- k2 (0 - 81)‘811-I(8 - ii,)}. 

The design criterion, then, for the case 
where only a subset of the parameters are 
of interest which is analogous to the criterion 
for the full parameter set would be to maxi- 
mize the determinant of (cl1 - c~~c~~-‘c~~) 

with respect to the independent variables 
t. For p = 2 

so that 

For the case of the BET equation 

f = 21 = (1 _ x)( lvT(c _ l)x); t = CL- 

afu au, -=-= 
de1 ah Ylu and vu - = 2 = 

ae2 
y2u 

and the design criterion is 

Max 
w.r.t. x 

which is equation (5) when n = 2. 
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